PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Crossing of two mobile averages: A method for measuring the roughness exponent
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Self-affine signals characterized by a defined H@rstighness exponentH can be investigated through
mobile averages. The densipyof crossing points between any two moving averages is a measure of long-
range power-law correlations in the signal. The method is compared to the detrended fluctuation analysis. We
take advantage of our findings in order to propose a practically powerful and accurate technique for determin-
ing H and apply it right away to cases with persistent or antipersistent correldqt®i363-651X98)10411-1

PACS numbeps): 05.50+q, 47.53+n

Stochastic processes and mechanisms that generate fllanalysis and forecastingp]. Obviously, the forecasting in
tuating sequences are numerddg. Conversely, it is rel- empirical finance is based on “recipes” that are specific to
evant to characterize natural signals. Among numerous prahe considered market. Even though mobile averages seem to
posed techniques, one consists in measuring the roughnelss “artificial” measures, we will see below that they present
(self-affing exponent of a signal. Roughness or Hurst expo-some very practical interest for physicists and raise new
nents are commonly measured in surface scid@deand  questions.
time series analysig3]. One aim in the present report is to characterize the basic

We propose a technique based on the so-called mobilstatistics of the crossing points of mobile averages on time
averages that will be found to be very powerful and accurateseries exhibiting long-range power-law correlations. Physi-
and contain original physical meanings, even though mucleists will understand the opportunities behind the findings
still has to be done to satisfy scientific rigor and establish thend will be able to imagine the usual routes of useful inves-
concept. In the concluding paragraphs we will open up ditigations after the first basic idea presented.

rections toward new investigations.
Consider a time serieg(t) given at discrete times At
time t, the mobile averagg is defined as

T-1

> yt—i),

=0

! 1
T (2)
i.e., the average of for the lastT data points. One can easily
show that if y increases(decreases with time, y<y

The artificial time series used for the following demon-
stration within the successive random addition method origi-
nates ind=1 landscape profile construction. This method is
also called “midpoint displacement” in the literatufé].
With this algorithm based on iterations, one generates a se-
guence of lengtiN=2"+1 wheren is an iteration number.

At each iteration, one finds the intermediate positiémgd-

pointg of couples of neighboring points and calculates the
values of the signal at the midpoints through some interpo-
lation with respect to neighboring couples. The midpoint val-

(y>y). Thus, the mobile average captures the trend of theies are then displaced by random numbers chosen from a
signal over a time interval. Such a procedure can be usednormal distribution with zero mean and varianeé/2°"".

in fact on any time series, as in atmospheric or meteorologiThe parameteH is the Hurst exponent of the resulting self-
cal data, DNA, financial data fracture, internet, traffic, andaffine signal or fractional Brownian motion. For suclidés-

fractional Brownian motions. o o
Consider two different mobile averaggs andy, charac-
terized respectively over, e.dl; and T, intervals such that

T,>T,. These mobile averages are illustrated in Fig. 1 in
the specific case of the evolution of a typical stochastic mo-

tion and forT;=5 andT,=30. The crossings of, andy,
coincide with drastic changes of the trend ydt). If y(t)
increases for a long period before decreasing rapidlyyill

crossy, from above. This event is called a “death cross” in

empirical financg4]. On the contrary, ify; crossesy, from

below, the crossing point coincides with an upsurge of the

signaly(t). This event is called a “gold cross.” Financial
analysts often try to “extrapolate” the evolution gf and

y, expecting “gold” or “death” crosses. Most computers
on trading places are equipped for performing this kind of

crete self-affine signaly(t), we can choose a particular

4.0 |

death X
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FIG. 1. Two moving averageg, andy, of an arbitrary signal

* Author to whom correspondence should be addressed. Electronfor T;=5 and forT,=30. A “gold cross” and a “death cross” are
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denoted(see definition in the main text

6832 © 1998 The American Physical Society



PRE 58 BRIEF REPORTS 6833

0.10 10000 ¢ e ————ry
—o—H=0.3 X
0-081 —o— H=0.5 7 0
—a— H=0.7 1000 & .
0.06 — -
Q.
0.04 |- . 100 | .
0.02 _W
1 1 1 1 | 1 1 1 l 10 L 1 ol L s Ly
0.0 0.2 0.4 0.6 0.8 1.0 10 100 1000

AT T

2

FIG. 2. The densityp of crossing points as a function of the
relative differenceA T with T,=80. Different values oH are illus-
trated:H=0.3, 0.5, and 0.7.

FIG. 3. The density of crossing poingsbetween two mobile
averages of &d1=0.7 signal as a function of, illustrated forT;
point on the signal and rescale its neighborhood by a fdxtor
using the roughneg®sr Hurst[8,3]) exponenH and defining
the new signab~My(bt). For the correct exponent valli
the signal obtained should be indistinguishable from th
original one, i.e.,

T,=T,/2, the density of crossing points has a minimum. It
should be noted that this remarkable result was not men-
dioned elsewhere probably due to the fact that some theoret-
ical framework for the mobile average method is missing.
Moreover, for smallAT values, we find thap scales as
y(t)~b~y(bt). (2 ATH laswellasp~(1—AT)" 1 for AT values close to 1.

An exponentH<1/2 implies an antipersistentbehavior We .have also found that scales ad , ~. Th|s'|s llustrated
while H>1/2 means a so-callepersistentsignal [3]. The N Fig. 3 by the plot ofp(T») for a H=0.7 signal and for
simple Brownian motion is characterized by=1/2 and T1=(T2/2), i.e., the minimum of the(AT) curve as a func-
white noise byH = 0. Using thesuccessive random addition tion of T,. Considering the above behaviors, we propose the
technique described above, we have built time series up tgeneral form for the density of crossing points
N=262 145 data pointsn(= 18 iteration$. 1

It is well known [3] that the set of crossing points be- p~—[(AT)(1-AT)]" L. (4
tween the signaj(t) and they=0 level is a Cantor set with T2
a fractal dimension +H. The related physics pertains to
so-called studies in first return time problef®§. However,
the question can be raised whether there is a Cantor set f
crossing points betweeyy andy,. We have calculated the
density of such crossing poingsfor various values oH. In
all checked caseg, is independent of the sizd¢ of the time
series. In so doing, the fractal dimension of the set of cros

Two time scales appear in E¢4): AT andT,. The time
(Si'ifferenceAT allows for the investigations of the correla-
tions (H) lying in the signal. The largest periof, controls
trivially the amplitude ofp: the greater iS5, the smoother is
the mobile averagg,, and the fewer is the number of cross-
Si_ng points. The above relationship is quite similar to the den-
ing points is 1, i.e., the points are homogeneously distributed' Of states on a fractal Iz;ttice, which are solutions .Of Fhe
in time alongy; andy,. Due to the homogeneous distribu- Schra:hnger equ_ahoy[lO]. It is a_malogous to the age d'.Str."
tion of crossing points, the forecasting of “gold” and bution of domains in coarsening problems in the spinlike
“death” crosses is impossible even for self-affine signalsmOdel[ll]' L - .
y(t). This is different from the forecasting of the sign of One practical interest of the above findings stems in the

h : 1) hich i ible forH easy implementation of an algorithm fo_r measurlHgWe
iaflz uctuationy(t-+1)=y(t) which is possible for have tested the accuracy of the estimatioHathrough the

. ; ; _ 13
WhenT is large,y(t) is smooth and “relatively distant” measure.ofp on time series 9f lengtiN=2""+1 and we
from the signaly(t) while for small T values,y(t) rather have varied the parametét. Figure 4 presents the relative

or) L :
follows the excursion of the signal. Thus, it is of high interest S (%) in determiningH for the present technique as a

to observe how behaves and would have some scaling be_functlon ofH. We consider here only the ca¥e=100. Two

havior with respect to the relative differende—T,. More main advantages of the technique have to be mentidied:

precisely, consider the relative differencee@QT<1 defined the algo.n_t_hm Is fast and can be |r.n.plemented in real-time
analysis;(ii) the technique is insensitive to local and global

as misleading trends that the signal may exhibit. This “insen-
T,—T, sivity” is due to the fact that similar trends appear in bgth
AT= T, 3 andys,.

There are many ways to measure the Hurst exponent and
Figure 2 presents on linear scales the plop@fs a function the related fractal dimensidb=2—H of a scalar time se-
of AT for H=0.3, 0.5, and 0.7. The parameiey was fixed ries. The above measure bf can be compared with that
to be 80. Thep(AT) curve is fully symmetric and diverges obtained on the same time series using the detrended fluc-
for AT=0 and forAT=1, i.e., for identicaly; andy,. For tuation analysi§DFA), which is also insensitive to local and
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50 T I (F)~t". (6)

—+—DFA | The results of DFA are also illustrated in Fig. 4 aff@t.
—o— mobile averages As observed in Fig. 4, the accuracy of the mobile average
method is of the same order than the one of the DFA. It
7 should be noted that the relative error in the determination of
H is huge for smalH values due to the stationarity of signal.
_ Improved methods are then need@d
One should also remark that the present technique can be
easily extended to the case of multifractat multiaffing
signals, which are more elaborate than the present self-affine
signals. It is indeed possible to investigate the crossing of the
01 02 03 04 05 06 07 08 00 various moments) of the signaly calculated over two dif-
H ferent periodsT,; andT, (q is fixed to 1 hereipn The whole
multifractal H(q) spectrum should then be found. This is
FIG. 4. Relative errof (in %) for the estimation of the mea- outside the scope of the present report and is planned to be
sured Hurst exponent by DFA and mobile averages as a function gdxamined in the near future.
thg HL_Jrst _exponenH of artificial time series constructed by the In summary, we have investigated the densgityf cross-
midpoint displacement method. ing points between two mobile averages on a self-affine sig-

o naly. As a function of the Hurst exponeht characterizing
global trends. In short, DFA consists in dividing a randomipq self-affinity, it is found thap is a symmetric function of

variable sequencg(n) of lengthN into N/t nonoverlapping AT j e, the difference between the periods of the averages.
boxes, each containingpoints. The best linear trene(n)  \joreover, the behavior g5 depends only on the roughness
=an+b in each box is defined. The fluctuation function p of the signaly. It turns out that the crossing points of two
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F(1) is then calculated following mobile averages can be used in order to determine the Hurst
Kt exponent of a self-affine signal. It seems that this technique
1 . . :
FP(=- > ly(m—z(n)]2, k=1,2 N/t gives accurate values bf as good as those obtained with the
tn=Ct+1 ’ e DFA technique, and suggests interesting developments.
(5

N.V. is financially supported by the FNRS. A special
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