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Crossing of two mobile averages: A method for measuring the roughness exponent

N. Vandewalle* and M. Ausloos
SUPRAS, Institut de Physique B5, Universite´ de Liège, B-4000 Lie`ge, Belgium

~Received 19 March 1998!

Self-affine signals characterized by a defined Hurst~roughness! exponentH can be investigated through
mobile averages. The densityr of crossing points between any two moving averages is a measure of long-
range power-law correlations in the signal. The method is compared to the detrended fluctuation analysis. We
take advantage of our findings in order to propose a practically powerful and accurate technique for determin-
ing H and apply it right away to cases with persistent or antipersistent correlations.@S1063-651X~98!10411-7#

PACS number~s!: 05.50.1q, 47.53.1n
fl

pr
n
o

b
at
uc
th
d

y

th
ed
g

nd

in
o

in

th
l

s
o

to
m to
nt
ew

asic
ime
si-
gs
es-

n-
igi-
is

se-

he
po-
al-
m a

lf-

r

on
Stochastic processes and mechanisms that generate
tuating sequences are numerous@1#. Conversely, it is rel-
evant to characterize natural signals. Among numerous
posed techniques, one consists in measuring the rough
~self-affine! exponent of a signal. Roughness or Hurst exp
nents are commonly measured in surface science@2# and
time series analysis@3#.

We propose a technique based on the so-called mo
averages that will be found to be very powerful and accur
and contain original physical meanings, even though m
still has to be done to satisfy scientific rigor and establish
concept. In the concluding paragraphs we will open up
rections toward new investigations.

Consider a time seriesy(t) given at discrete timest. At
time t, the mobile averageȳ is defined as

ȳ5
1

T (
i 50

T21

y~ t2 i !, ~1!

i.e., the average ofy for the lastT data points. One can easil
show that if y increases ~decreases! with time, ȳ,y
( ȳ.y). Thus, the mobile average captures the trend of
signal over a time intervalT. Such a procedure can be us
in fact on any time series, as in atmospheric or meteorolo
cal data, DNA, financial data fracture, internet, traffic, a
fractional Brownian motions.

Consider two different mobile averagesȳ1 andȳ2 charac-
terized respectively over, e.g.,T1 andT2 intervals such that
T2.T1 . These mobile averages are illustrated in Fig. 1
the specific case of the evolution of a typical stochastic m
tion and forT155 andT2530. The crossings ofȳ1 and ȳ2
coincide with drastic changes of the trend ofy(t). If y(t)
increases for a long period before decreasing rapidly,ȳ1 will
crossȳ2 from above. This event is called a ‘‘death cross’’
empirical finance@4#. On the contrary, ifȳ1 crossesȳ2 from
below, the crossing point coincides with an upsurge of
signal y(t). This event is called a ‘‘gold cross.’’ Financia
analysts often try to ‘‘extrapolate’’ the evolution ofy1 and
y2 expecting ‘‘gold’’ or ‘‘death’’ crosses. Most computer
on trading places are equipped for performing this kind
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analysis and forecasting@5#. Obviously, the forecasting in
empirical finance is based on ‘‘recipes’’ that are specific
the considered market. Even though mobile averages see
be ‘‘artificial’’ measures, we will see below that they prese
some very practical interest for physicists and raise n
questions.

One aim in the present report is to characterize the b
statistics of the crossing points of mobile averages on t
series exhibiting long-range power-law correlations. Phy
cists will understand the opportunities behind the findin
and will be able to imagine the usual routes of useful inv
tigations after the first basic idea presented.

The artificial time series used for the following demo
stration within the successive random addition method or
nates ind51 landscape profile construction. This method
also called ‘‘midpoint displacement’’ in the literature@6#.
With this algorithm based on iterations, one generates a
quence of lengthN52n11 wheren is an iteration number.
At each iteration, one finds the intermediate positions~mid-
points! of couples of neighboring points and calculates t
values of the signal at the midpoints through some inter
lation with respect to neighboring couples. The midpoint v
ues are then displaced by random numbers chosen fro
normal distribution with zero mean and variances2/22nH.
The parameterH is the Hurst exponent of the resulting se
affine signal or fractional Brownian motion. For such a~dis-
crete! self-affine signaly(t), we can choose a particula

ic
FIG. 1. Two moving averagesȳ1 and ȳ2 of an arbitrary signal

for T155 and forT2530. A ‘‘gold cross’’ and a ‘‘death cross’’ are
denoted~see definition in the main text!.
6832 © 1998 The American Physical Society
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point on the signal and rescale its neighborhood by a factb
using the roughness~or Hurst@8,3#! exponentH and defining
the new signalb2Hy(bt). For the correct exponent valueH,
the signal obtained should be indistinguishable from
original one, i.e.,

y~ t !;b2Hy~bt!. ~2!

An exponent H,1/2 implies an antipersistent behavior
while H.1/2 means a so-calledpersistentsignal @3#. The
simple Brownian motion is characterized byH51/2 and
white noise byH50. Using thesuccessive random additio
technique described above, we have built time series u
N5262 145 data points (n518 iterations!.

It is well known @3# that the set of crossing points be
tween the signaly(t) and they50 level is a Cantor set with
a fractal dimension 12H. The related physics pertains t
so-called studies in first return time problems@9#. However,
the question can be raised whether there is a Cantor se
crossing points betweenȳ1 and ȳ2 . We have calculated the
density of such crossing pointsr for various values ofH. In
all checked cases,r is independent of the sizeN of the time
series. In so doing, the fractal dimension of the set of cro
ing points is 1, i.e., the points are homogeneously distribu
in time alongȳ1 and ȳ2 . Due to the homogeneous distribu
tion of crossing points, the forecasting of ‘‘gold’’ an
‘‘death’’ crosses is impossible even for self-affine sign
y(t). This is different from the forecasting of the sign
each fluctuationy(t11)2y(t) which is possible forH
Þ1/2.

WhenT is large,ȳ(t) is smooth and ‘‘relatively distant’’
from the signaly(t) while for small T values, ȳ(t) rather
follows the excursion of the signal. Thus, it is of high intere
to observe howr behaves and would have some scaling
havior with respect to the relative differenceT12T2 . More
precisely, consider the relative difference 0,DT,1 defined
as

DT5
T22T1

T2
. ~3!

Figure 2 presents on linear scales the plot ofr as a function
of DT for H50.3, 0.5, and 0.7. The parameterT2 was fixed
to be 80. Ther(DT) curve is fully symmetric and diverge
for DT50 and forDT51, i.e., for identicalȳ1 and ȳ2 . For

FIG. 2. The densityr of crossing points as a function of th
relative differenceDT with T2580. Different values ofH are illus-
trated:H50.3, 0.5, and 0.7.
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T15T2/2, the density of crossing points has a minimum.
should be noted that this remarkable result was not m
tioned elsewhere probably due to the fact that some theo
ical framework for the mobile average method is missing

Moreover, for smallDT values, we find thatr scales as
DTH21 as well asr;(12DT)H21 for DT values close to 1.
We have also found thatr scales asT2

21. This is illustrated
in Fig. 3 by the plot ofr(T2) for a H50.7 signal and for
T15(T2/2), i.e., the minimum of ther(DT) curve as a func-
tion of T2 . Considering the above behaviors, we propose
general form for the density of crossing points

r;
1

T2
@~DT!~12DT!#H21. ~4!

Two time scales appear in Eq.~4!: DT and T2 . The time
differenceDT allows for the investigations of the correla
tions ~H! lying in the signal. The largest periodT2 controls
trivially the amplitude ofr: the greater isT2 , the smoother is
the mobile averagey2, and the fewer is the number of cros
ing points. The above relationship is quite similar to the de
sity of states on a fractal lattice, which are solutions of t
Schrödinger equation@10#. It is analogous to the age distr
bution of domains in coarsening problems in the spinl
model @11#.

One practical interest of the above findings stems in
easy implementation of an algorithm for measuringH. We
have tested the accuracy of the estimation ofH through the
measure ofr on time series of lengthN521311 and we
have varied the parameterH. Figure 4 presents the relativ
error ~%! in determiningH for the present technique as
function ofH. We consider here only the caseT25100. Two
main advantages of the technique have to be mentioned~i!
the algorithm is fast and can be implemented in real-ti
analysis;~ii ! the technique is insensitive to local and glob
misleading trends that the signal may exhibit. This ‘‘inse
sivity’’ is due to the fact that similar trends appear in bothȳ1
and ȳ2 .

There are many ways to measure the Hurst exponent
the related fractal dimensionD f522H of a scalar time se-
ries. The above measure ofH can be compared with tha
obtained on the same time series using the detrended
tuation analysis~DFA!, which is also insensitive to local an

FIG. 3. The density of crossing pointsr between two mobile
averages of aH50.7 signal as a function ofT2 illustrated forT1

5T2/2.
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global trends. In short, DFA consists in dividing a rando
variable sequencey(n) of lengthN into N/t nonoverlapping
boxes, each containingt points. The best linear trendz(n)
5an1b in each box is defined. The fluctuation functio
F(t) is then calculated following

F2~ t !5
1

t (
n5~k21!t11

kt

uy~n!2z~n!u2, k51,2, . . . ,N/t.

~5!

AveragingF(t) over theN/t intervals gives the fluctuation
^F(t)& as a function oft. If the y(n) data are random uncor
related variables or short range correlated variables, the
havior is expected to be a power law

FIG. 4. Relative errore ~in %! for the estimation of the mea
sured Hurst exponent by DFA and mobile averages as a functio
the Hurst exponentH of artificial time series constructed by th
midpoint displacement method.
s

e-

^F&;tH. ~6!

The results of DFA are also illustrated in Fig. 4 after@7#.
As observed in Fig. 4, the accuracy of the mobile avera

method is of the same order than the one of the DFA
should be noted that the relative error in the determination
H is huge for smallH values due to the stationarity of signa
Improved methods are then needed@7#.

One should also remark that the present technique ca
easily extended to the case of multifractal~or multiaffine!
signals, which are more elaborate than the present self-a
signals. It is indeed possible to investigate the crossing of
various momentsq of the signaly calculated over two dif-
ferent periodsT1 andT2 ~q is fixed to 1 herein!. The whole
multifractal H(q) spectrum should then be found. This
outside the scope of the present report and is planned t
examined in the near future.

In summary, we have investigated the densityr of cross-
ing points between two mobile averages on a self-affine
nal y. As a function of the Hurst exponentH characterizing
the self-affinity, it is found thatr is a symmetric function of
DT, i.e., the difference between the periods of the averag
Moreover, the behavior ofr depends only on the roughnes
H of the signaly. It turns out that the crossing points of tw
mobile averages can be used in order to determine the H
exponent of a self-affine signal. It seems that this techni
gives accurate values ofH as good as those obtained with th
DFA technique, and suggests interesting developments.
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